
EE 435

Lecture 29

Data Converters

• Spectral Performance

• Quantization Noise

1

- Windowing



INL Often Not a Good Measure of Linearity
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Four identical INL with dramatically different linearity
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Why is this a Key Theorem? 
T

TS

• DFT requires dramatically less computation time than the integrals for 

obtaining  Fourier Series coefficients

• Can easily determine the sampling rate (often termed the Nyquist rate)  to 

satisfy the band limited part of the theorem 

  1-hm01mNΧ
N

2
A Pm 

  0kΧ 

THEOREM:  Consider a periodic signal with period T=1/f and sampling 

period TS=1/fS.  If NP is an integer and x(t) is band limited to fMAX, then

and                            for all k not defined above

where                          is the DFT of the sequence

N=number of samples,  NP is the number of periods, and 

  1N

0k
kΧ




  1N

0kSkTx



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h = Int
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 
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Distortion Analysis

How are spectral components determined?

   













 





Tt

t

tjkω

Tt

t

tjkω

k

1

1

1

1

dtetfdtetf
ωT

1
A

By integral

By DFT

By FFT (special computational method for obtaining DFT)

(with some restrictions that will be discussed)

   dtktωsintf
Tω
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1



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2
b

Tt

t

k

1

1






or

Integral is very time consuming, particularly if large number of components are required

.•   • •   •  •   Review from last lecture .•   • •   •  •



Distortion Analysis
T

TS

k

 k

NP+1 2NP+1 3NP+1 4NP+1

A1

A2

A3 A4A0

If the hypothesis of the theorem are satisfied, we thus have
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Considerations for Spectral 

Characterization

•Tool Validation

•DFT Length and NP

•Importance of Satisfying Hypothesis

•Windowing

6

.•   • •   •  •   Review from last lecture .•   • •   •  •



Considerations for Spectral Characterization
DFT Length and NP

• DFT Length and NP  do not affect the computational noise floor

• Although not shown here yet, DFT length does reduce the quantization

noise floor coefficients but not total quantization noise

nDFT2
2

QUANT k
k=1

E A 

If the Ak’s are constant and equal DFTn /2
QUANT kE A 2

If we assume EQUANT is fixed and no 

signal present

Solving for Ak, obtain

DFT

QUANT
k n /2

E
A

2


If input is full-scale sinusoid with only amplitude quantization with n-bit res, 

112 3 2
QUANTE


 



LSB REF
n

X X

(this expression is actually independent of input waveform)
7

(these are now the DFT coefficients due to quantization noise, not computation noise)

.•   • •   •  •   Review from last lecture .•   • •   •  •



Considerations for Spectral Characterization
DFT Length

DFT

REF
k n /2n+1

X
A

3•2 2


112 3 2
QUANTE


 



LSB REF
n

X X

Substituting for EQUANT, obtain

This value for Ak thus decreases with the length of the DFT sampline window

(Note Ak>> computational noise floor (-310dB for Matlab) for all practical n, nDFT)

Example:  if n=16, nDFT=12 (4096 pt transform),  and XREF=1V,

then Ak=6.9E-8V  (-143dB), 

8

.•   • •   •  •   Review from last lecture .•   • •   •  •



Considerations for Spectral 

Characterization

•Tool Validation

•DFT Length and NP

•Importance of Satisfying Hypothesis

•Windowing

9

.•   • •   •  •   Review from last lecture .•   • •   •  •



Spectral Response with Non-coherent Sampling

(zoomed in around fundamental)

.•   • •   •  •   Review from last lecture .•   • •   •  •



Effects of High-Frequency Spectral Components

.•   • •   •  •   Review from last lecture .•   • •   •  •



Effects of High-Frequency Spectral Components

(zoomed in around fundamental)

.•   • •   •  •   Review from last lecture .•   • •   •  •



Observations

• Aliasing will occur if the band-limited part of the 
hypothesis for using the DFT is not satisfied

• Modest aliasing will cause high frequency 
components that may or may not appear at a 
harmonic frequency

• More egregious aliasing can introduce 
components near or on top of fundamental and 
lower-order harmonics

• Important to avoid aliasing if the DFT is used for 
spectral characterization

.•   • •   •  •   Review from last lecture .•   • •   •  •



Considerations for Spectral 

Characterization

• Tool Validation

• DFT Length and NP

• Importance of Satisfying Hypothesis
- NP is an integer

- Band-limited excitation

• Windowing



Are there any strategies to address the 

problem of requiring precisely an integral 

number of periods to use the FFT?

Windowing is sometimes used

Windowing is sometimes misused



Windowing
Windowing is the weighting of the time 

domain function to maintain continuity at 

the end points of the sample window

Well-studied window functions:

• Rectangular (also with appended zeros)

• Triangular

• Hamming

• Hanning

• Blackman



Input Waveform
Recall



Input Waveform

Recall



Rectangular Window

Sometimes termed a boxcar window

Uniform weight

Can append zeros

Without appending zeros equivalent to no window



Rectangular Window

)sin(.)sin( t250tVIN 

Assume fSIG=50Hz

Consider  NP=20.1  N=512

SIGπf2ω 



Rectangular Window



(zoomed in around fundamental)

Spectral Response with Non-coherent sampling



Rectangular Window (with appended zeros)



Rectangular Window

Columns 1 through 7 

-48.8444  -48.7188  -48.3569  -47.7963  -47.0835  -46.2613  -45.3620

Columns 8 through 14 

-44.4065  -43.4052  -42.3602  -41.2670  -40.1146  -38.8851  -37.5520

Columns 15 through 21 

-36.0756  -34.3940  -32.4043  -29.9158  -26.5087  -20.9064   -0.1352

Columns 22 through 28 

-19.3242  -25.9731  -29.8688  -32.7423  -35.1205  -37.2500  -39.2831

Columns 29 through 35 

-41.3375  -43.5152  -45.8626  -48.0945  -48.8606  -46.9417  -43.7344



Rectangular Window

Columns 1 through 7 

-48.8444  -48.7188  -48.3569  -47.7963  -47.0835  -46.2613  -45.3620

Columns 8 through 14 

-44.4065  -43.4052  -42.3602  -41.2670  -40.1146  -38.8851  -37.5520

Columns 15 through 21 

-36.0756  -34.3940  -32.4043  -29.9158  -26.5087  -20.9064   -0.1352

Columns 22 through 28 

-19.3242  -25.9731  -29.8688  -32.7423  -35.1205  -37.2500  -39.2831

Columns 29 through 35 

-41.3375  -43.5152  -45.8626  -48.0945  -48.8606  -46.9417  -43.7344

Energy spread over several frequency components



Triangular Window



Triangular Window



(zoomed in around fundamental)

Spectral Response with Non-Coherent Sampling and Windowing



Triangular Window



Triangular Window

Columns 1 through 7 

-100.8530  -72.0528  -99.1401  -68.0110  -95.8741  -63.9944  -92.5170

Columns 8 through 14 

-60.3216  -88.7000  -56.7717  -85.8679  -52.8256  -82.1689  -48.3134

Columns 15 through 21 

-77.0594  -42.4247  -70.3128  -33.7318  -58.8762  -15.7333   -6.0918

Columns 22 through 28 

-12.2463  -57.0917  -32.5077  -68.9492  -41.3993  -74.6234  -46.8037

Columns 29 through 35 

-77.0686  -50.1054  -77.0980  -51.5317  -75.1218  -50.8522  -71.2410

Note:  Magnitude of the fundamental has been reduced but so 

have the skirting effects have also been reduced.

Note:  Windowing has reduced energy in the signal but also made 

transition at end-point of sampling window continuous when 

creating a periodic waveform



Hamming Window

Note:  Magnitude of the fundamental has been reduced but  less than for 

triangular window.

Note:  Windowing has made transition at end-point of sampling window 

continuous when creating a periodic waveform



Hamming Window



(zoomed in around fundamental)

Spectral Response with Non-Coherent Sampling and Windowing



Comparison with Rectangular Window

Note:  Vertical axis are different



Hamming Window

Columns 1 through 7 

-70.8278  -70.6955  -70.3703  -69.8555  -69.1502  -68.3632  -67.5133

Columns 8 through 14 

-66.5945  -65.6321  -64.6276  -63.6635  -62.6204  -61.5590  -60.4199

Columns 15 through 21 

-59.3204  -58.3582  -57.8735  -60.2994  -52.6273  -14.4702   -5.4343

Columns 22 through 28 

-11.2659  -45.2190  -67.9926  -60.1662  -60.1710  -61.2796  -62.7277

Columns 29 through 35 

-64.3642  -66.2048  -68.2460  -70.1835  -71.1529  -70.2800  -68.1145



Hanning Window



Hanning Window



(zoomed in around fundamental)

Spectral Response with Non-Coherent Sampling and Windowing



Comparison with Rectangular Window

Note:  Vertical axis are different



Hanning Window

Columns 1 through 7 

-107.3123 -106.7939 -105.3421 -101.9488  -98.3043  -96.6522  -93.0343

Columns 8 through 14 

-92.4519  -90.4372  -87.7977  -84.9554  -81.8956  -79.3520  -75.8944

Columns 15 through 21 

-72.0479  -67.4602  -61.7543  -54.2042  -42.9597  -13.4511   -6.0601

Columns 22 through 28 

-10.8267  -40.4480  -53.3906  -61.8561  -68.3601  -73.9966  -79.0757

Columns 29 through 35 

-84.4318  -92.7280  -99.4046  -89.0799  -83.4211  -78.5955  -73.9788



Comparison of 4 windows



Comparison of 4 windows



But windows can make things worse too!

Consider situation where we really do have coherent sampling and a 

window is applied

fsig1=50Hz

fsig2=100Hz

N=512

Np=20



Comparison of 4 windows when sampling 

hypothesis are satisfied



Comparison of 4 windows



But windows can make things worse too!

Consider situation where we really do have coherent sampling and a 

window is applied

fsig1=50Hz

fsig2=100Hz

N=512

Np=20

And we do not really know how much worse thing can be!

Be careful about interpreting results obtained by using 

windowing to mitigate the non-coherent sampling problem ! 

Remember the hypothesis of the theorem relating the DFT, which 

is easy to calculate, to the Fourier Series coefficients!



Preliminary Observations about Windows

• Provide separation of spectral components

• Energy can be accumulated around 

spectral components

• Simple to apply

• Some windows work much better than 

others

But – windows do not provide dramatic 

improvement and can significantly degrade 

performance if sampling hypothesis are met



Issues of Concern for Spectral Analysis

An integral number of periods is critical for spectral analysis

Not easy to satisfy this requirement in the laboratory

Windowing can help but can hurt as well

Out of band energy can be reflected back into bands of interest

Characterization of CAD tool environment is essential

Spectral Characterization of high-resolution data converters 

requires particularly critical consideration to avoid simulations or 

measurements from masking real performance



Summary of time and amplitude 

quantization assessment

Time and amplitude quantization do not 

introduce harmonic distortion

Time and amplitude quantization do 

increase the noise floor



Performance Characterization of Data Converters

• Static characteristics
– Resolution

– Least Significant Bit (LSB)

– Offset and Gain Errors

– Absolute Accuracy

– Relative Accuracy

– Integral Nonlinearity (INL)

– Differential Nonlinearity (DNL)

– Monotonicity (DAC)

– Missing Codes (ADC)

– Quantization Noise

– Low-f Spurious Free Dynamic Range (SFDR)

– Low-f Total Harmonic Distortion (THD)

– Effective Number of Bits (ENOB)

– Power Dissipation



Quantization Noise

• DACs and ADCs generally quantize both 

amplitude and time

• If converting a continuous-time signal 

(ADC) or generating a desired continuous-

time signal (DAC) these quantizations

cause a difference in time and amplitude 

from the desired signal – this difference is 

termed “noise”.

• First a few comments about Noise



What is Noise in a data converter?

Types of noise:

• Random noise due to movement of electrons in electronic circuits

(resistors and active devices)

• Interfering signals generated by other systems

• Interfering signals generated by a circuit or system itself

• Error signals associated with imperfect signal processing algorithms 

or circuits

Noise is a term applied to some nonideal effects of a data converter 

Precise definition of noise is probably not useful

Some differences in views about what nonideal characteristics of a data 

converter should be referred to as noise

– Quantization noise

– Sample Jitter

– Harmonic Distortion



Noise

All of these types of noise are present in data converters and are

of concern when designing most data converters

Can not eliminate any of these noise types but with careful design can 

manage their effects to certain levels

Noise (in particular the random noise) is often the major factor limiting 

the ultimate performance potential of many if not most data converters

Some major types of noise:

• Random noise due to movement of electrons in electronic circuits

• Interfering signals generated by other systems

• Interfering signals generated by a circuit or system itself

• Error signals associated with imperfect signal processing algorithms 

or circuits



Noise

Some major types of noise:

• Random noise due to movement of electrons in electronic circuits

• Interfering signals generated by other systems

• Interfering signals generated by a circuit or system itself

• Error signals associated with imperfect signal processing algorithms 

or circuits

Quantization noise is a significant 

component of this noise in ADCs and 

DACs and is present even if the ADC 

or DAC is ideal

Will now investigate quantization noise



Quantization Noise in ADC

XIN
ADC

n
XOUT

XREF

Consider an Ideal ADC with first transition point at 0.5XLSB where XLSB is 

determined by the bits of resolution of the ADC

Consider an input that is a low frequency sawtooth waveform of period T that 

goes from 0 to XREF that is sampled very fast so that the digital output always 

represents a quantized version of the input.

(same concepts apply to DACs)

Draw here:



Quantization Noise in ADC

XIN
ADC

n
XOUT

XREF

Consider an Ideal ADC with first transition point at 0.5XLSB

If the input is a low frequenocy sawtooth waveform of period T that goes from 0 

to XREF and if sampling is very fast so that the digital output always represents a 

quantized version of the input, the error signal in the time domain will be:

t

εQ

-.5 XLSB

T1

T
.5 XLSB

2T1 3T1 4T1

where T1=T/2n

This time-domain waveform is termed the Quantization Noise for the ADC

with a sawtooth (or triangular) input

(same concepts apply to DACs)



Quantization Noise in ADC

t

εQ

-.5 XLSB

T1

T
.5 XLSB

2T1 3T1 4T1

For large n, this periodic waveform behaves much like a random noise source 

that is uncorrelated with the input and can be characterized by its RMS value 

which can be obtained by integrating over any interval of length T1.  For 

notational convenience, shift the waveform by T1/2 units

 2
1

1

T /2

 RMS
1 T /2

1
E

T
Q t dt



 



Quantization Noise in ADC

t

εQ

-.5 XLSB

T1

T
.5 XLSB

2T1 3T1 4T1

 2
1

1

T /2

 RMS
1 T /2

1
E

T
Q t dt



 

t

εQ

-.5 XLSB

0.5T1

.5 XLSB

-0.5T1

  LSB

1

X
t

T
Q t

 
  

 

In this interval, εQ can be expressed as



Quantization Noise in ADC

 2
1

1

T /2

 RMS
1 T /2

1
E

T
Q t dt



 

t

εQ

-.5 XLSB

0.5T1

.5 XLSB

-0.5T1

  LSB

1

X
t

T
Q t

 
  

 

1

1

2T /2
2 LSB

 RMS
1 1T /2

1
E - t

T T
dt



 
  

 


X

1

1

T /2
3

 RMS  LSB 3
1 -T /2

1 t
E

3T
 X

 LSB
 RMSE

12

X



Quantization Noise in ADC

 LSB
 RMSE

12

X

The signal to quantization noise ratio (SNR) can now be determined.

Since the input signal is a sawtooth waveform of period T and amplitude

XREF, it follows by the same analysis that it has an RMS value of

n
LSBREF

 RMS
2 X

12 12
 
X

X

Thus the SNR is given by

n
n RMS  LSB

 RMS  LSB

2
SNR = 2

E
 

X X

X
or, in dB, 

 dBSNR  =20 n log2 =6.02n

Note:  dB subscript often neglected when not concerned about confusion



Quantization Noise in ADC

 SNR =20 n log2 =6.02n

How does the SNR change if the input is a sinusoid that goes

from 0 to XREF centered at XREF/2?

XIN

t

XREF

For full-scale  sawtooth (or triangular input) 

For full-scale  sinusoidal input SNR =? ? ?



Quantization Noise in ADC

How does the SNR change if the input is a sinusoid that goes

from 0 to XREF centered at XREF/2?

XIN

t

XREF

Time and amplitude quantization points



Quantization Noise in ADC

How does the SNR change if the input is a sinusoid that goes

from 0 to XREF centered at XREF/2?

XQIN

t

XIN

t

XREF

Time and Amplitude Quantized Waveform



Quantization Noise in ADC

How does the SNR change if the input is a sinusoid that goes

from 0 to XREF centered at XREF/2?

XQIN

t

XIN

t

XREF

Error waveform 

εQ

XLSB

t



Quantization Noise in ADC
How does the SNR change if the input is a sinusoid that goes

from 0 to XREF centered at XREF/2?

• Appears to be highly uncorrelated with input even though deterministic

• Mathematical expression for εQ very messy

• Excursions exceed XLSB 

• For low frequency inputs and higher resolution, at any time, errors are 

approximately uniformly distributed between –XLSB/2 and XLSB/2

• Analytical form for εQRMS essentially impossible to obtain from εQ(t)

εQ

XLSB

t



Quantization Noise in ADC
How does the SNR change if the input is a sinusoid that goes

from 0 to XREF centered at XREF/2?

t0.5XLSB

εQ

-0.5XLSB

For low fSIG/fCL ratios, bounded by ±0.5 XLSB and at any point in time,

behaves almost as if a uniformly distributed random variable

εQ ~ U[-0.5XLSB, 0.5XLSB]



Quantization Noise in ADC
Recall:

If the random variable f is uniformly distributed in the interval [A,B]

f : U[A,B]   then the mean and standard deviation of f are given by

 f
A+B

μ =
2

f
B-A

σ =
12

If n(t) is a random process and <n(kTS)> is a sequence

of samples of n(t) then for large T/TS, 

 
   

1

S S
1

t +T
2 2 2

RMS n kT n kT
t

1
V = n t dt = σ +μ

T


Theorem:



Quantization Noise in ADC
How does the SNR change if the input is a sinusoid that goes

from 0 to XREF centered at XREF/2?

t0.5XLSB

εQ

-0.5XLSB

εQ ~ U[-0.5XLSB, 0.5XLSB]

 
1

1

t +T
2 2 2

RMS n n
t

1
V = n t dt = σ +μ

T


0
Q 

A+B
μ =

2
 

LSB
f

XB-A
σ =

12 12


LSB
RMS

X
V  = 

12Q
 

Note this is the same RMS noise that was present with a triangular input



Quantization Noise in ADC
How does the SNR change if the input is a sinusoid that goes

from 0 to XREF centered at XREF/2?

t0.5XLSB

εQ

-0.5XLSB

LSB
RMS

X
V  = 

12

But REF
 INRMS

X 1
V =

2 2

 
 
 

REF

n

LSB

X

32 2SNR = = 2
X 2

12

Thus obtain

Finally, in db, 

n
dB

3
SNR  = 20log 2 =6.02 n + 1.76 

2

 
 
 



ENOB based upon Quantization Noise Reference

Different factors can cause the SNR  or SNDR of an ADC to  not be ∞

• Quantization effects

• Device noise

• Interference Noise

• Nonlinear distortion

• Signal amplitude

• Jitter

• Computation errors

• …….
It is often useful to consider how an ADC performs from a SNR or SNDR 

viewpoint relative to how it would perform if only quantization effects 

(which are unavoidable) for an otherwise ideal ADC are present

An ENOB relative to an otherwise ideal ADC is often used as a metric for 

assessing SNR or SNDR performance

For example, consider a 14-bit ADC with a full-signal sinusoidal input that has 

quantization noise of                , device noise with an RMS value of 2XLSB and 

interference noise of 5 XLSB.  The total noise is then 5.4XLSB .  Thus its SNR is 

equivalent to that of a much lower resolution ADC that has only quantization 

noise present.  The resolution of that lower resolution ADC would be termed the 

ENOB relative to a Quantization Noise Only data converter

LSB
LSB

X
0.29X

12




ENOB based upon Quantization Noise Reference

dBSNR  = 6.02 n + 1.76 

Solving for n, obtain

Note:  could have used the SNRdB for a triangle input and would have 

obtained the expression

dBSNR
ENOB = 

6.02

But the earlier expression is more widely used when specifying the ENOB 

based upon the noise level present in a data converter

What is ENOB (using standard sinusoidal reference definition) if only 

quantization noise present with a full-scale sinusoidal input?

dBSNR -1.76
ENOB = 

6.02



ENOB based upon Quantization Noise Reference

dBSNR  = 6.02 n + 1.76 

Solving for n, obtain

dB n
SNR 6

E
.02

 
n+

O
1.. 7

6

6-1 76  -1.76
N B =

.02 6.02
 

Note:  could have used the SNRdB for a triangle input and would have 

obtained the expression

dBSNR
ENOB = 

6.02

But the earlier expression is more widely used when specifying the ENOB 

based upon the noise level present in a data converter

What is ENOB if only quantization noise present with a full-scale sinusoidal input?

dBSNR -1.76
ENOB = 

6.02



ENOB based upon Quantization Noise
For very low resolution levels, the assumption that the quantization noise is 

uncorrelated with the signal is not valid and the ENOB expression will cause

a modest error
n

corr
4 3

SNR   2 -2+
π 2

 
  

 from van de Plassche (p13)

Res (n) SNRcorr SNR 

1 3.86 7.78

2 12.06 13.8

3 19.0 19.82

4 25.44 25.84

5 31.66 31.86

6 37.79 37.88

8 49.90 49.92

10 61.95 61.96

Almost no difference for n ≥ 3

SNR = 6.02 n +1.76 

Table values in dB



Quantization Noise
Effects of quantization noise can be very significant, even at high resolution,

when signals are not of maximum magnitude
XIN

t

XREF

XIN

t

XREF

Quantization noise remains constant but signal level is reduced

The desire to use a data converter at a small fraction of full range

is one of the major reasons high resolution is required



Quantization Noise
Effects of quantization noise can be very significant, even at high resolution,

when signals are not of maximum magnitude

XIN

t

XREF



Quantization Noise

Example:   If a 14-bit audio output is derived from a DAC designed for providing 

an output of 100W but the normal listening level is at 50mW, what is the SNR 

due to quantization noise at maximum output and at the normal listening level?

What is the ENOB of the audio system when operating at 50mW?

At 100W output, SNR=6.02n+1.76 = 86.04dB

2

L

V
=100W

R

2
1

L

V
=50mW

R
1

V
V =

44.7

20log10V1=20log10V-20log1044.7=  -33dB

At 50mW output, SNR reduced by 33dB to 53.04dB

dBSNR -1.76 53.04-1.76
ENOB =   =  = 8.51

6.02 6.02

Note the dramatic reduction in the effective resolution of the DAC when operated

at only a small fraction of full-scale.



ENOB Summary

Resolution:  

l
2

10 ACT
2 ACT

10

log N
ENOB = og N

log


INL:

 R 2ENOB = n -log -1 nR specified res, ν INL in LSB

Quantization noise:

dBSNR -1.76
ENOB = 

6.02

dBSNR
ENOB = 

6.02
rel to triangle/sawtooth

rel to sinusoid

DNL:

(HW problem)

2ENOB log 1 MAX MIN

MAX

V V  
      

VMAX and VMIN are max and min 

outputs and ΔMAX is maximum 

absolute step



Stay Safe and Stay Healthy !



End of Lecture 29


